Connectedness of complete metric groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Clustering using Metric Space Connectedness

In metric space theory connectedness can be described in terms of a mapping of sets onto the real axis. This function is essentially a labelling function which clustering methods approximate. With the use of metric space theory a proposition and a conjecture are given which are implemented to perform unsupervised clustering which lacks many of the limitations of other, model-based, methods.

متن کامل

Connectedness at Infinity of Complete Kähler Manifolds

One of the main purposes of this paper is to prove that on a complete Kähler manifold of dimension m, if the holomorphic bisectional curvature is bounded from below by -1 and the minimum spectrum λ1(M) ≥ m2, then it must either be connected at infinity or isometric to R×N with a specialized metric, with N being compact. Generalizations to complete Kähler manifolds satisfying a weighted Poincaré...

متن کامل

Complete Generalized Metric Spaces

The well-known Banach’s fixed point theorem asserts that ifD X, f is contractive and X, d is complete, then f has a unique fixed point inX. It is well known that the Banach contraction principle 1 is a very useful and classical tool in nonlinear analysis. In 1969, Boyd and Wong 2 introduced the notion ofΦ-contraction. A mapping f : X → X on a metric space is called Φ-contraction if there exists...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1986

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-50-2-233-240